Evolution of Water Vapor Concentrations and Stratospheric Age of Air in Coupled Chemistry-Climate Model Simulations
نویسندگان
چکیده
Stratospheric water vapor concentrations and age of air are investigated in an ensemble of coupled chemistry-climate model simulations covering the period from 1960 to 2005. Observed greenhouse gas concentrations, halogen concentrations, aerosol amounts, and sea surface temperatures are all specified in the model as time-varying fields. The results are compared with two experiments (time-slice runs) with constant forcings for the years 1960 and 2000, in which the sea surface temperatures are set to the same climatological values, aerosol concentrations are fixed at background levels, while greenhouse gas and halogen concentrations are set to the values for the relevant years. The time-slice runs indicate an increase in stratospheric water vapor from 1960 to 2000 due primarily to methane oxidation. The age of air is found to be significantly less in the year 2000 run than the 1960 run. The transient runs from 1960 to 2005 indicate broadly similar results: an increase in water vapor and a decrease in age of air. However, the results do not change gradually. The age of air decreases significantly only after about 1975, corresponding to the period of ozone reduction. The age of air is related to tropical upwelling, which determines the transport of methane into the stratosphere. Oxidation of increased methane from enhanced tropical upwelling results in higher water vapor amounts. In the model simulations, the rate of increase of stratospheric water vapor during the period of enhanced upwelling is up to twice the long-term mean. The concentration of stratospheric water vapor also increases following volcanic eruptions during the simulations.
منابع مشابه
Stratospheric water vapor feedback.
We show here that stratospheric water vapor variations play an important role in the evolution of our climate. This comes from analysis of observations showing that stratospheric water vapor increases with tropospheric temperature, implying the existence of a stratospheric water vapor feedback. We estimate the strength of this feedback in a chemistry-climate model to be +0.3 W/(m(2)⋅K), which w...
متن کاملThe global impact of supersaturation in a coupled chemistry-climate model
Ice supersaturation is important for understanding condensation in the upper troposphere. Many general circulation models however do not permit supersaturation. In this study, a coupled chemistry climate model, the Whole Atmosphere Community Climate Model (WACCM), is modified to include supersaturation for the ice phase. Rather than a study of a detailed parameterization of supersaturation, the...
متن کاملImpact of stratospheric water vapor trends on ozone chemistry
Introduction Conclusions References Tables Figures Back Close Abstract Introduction Conclusions References Tables Figures Back Close Abstract A transient model simulation from 1960 to 2000 with the coupled climate-chemistry model (CCM) ECHAM4.L39(DLR)/CHEM shows a stratospheric water vapor trend during the last two decades of +0.7 ppmv and additionally a short-term increase during volcanic erup...
متن کاملSimulation of stratospheric water vapor trends: impact on stratospheric ozone chemistry
A transient model simulation of the 40-year time period 1960 to 1999 with the coupled climate-chemistry model (CCM) ECHAM4.L39(DLR)/CHEM shows a stratospheric water vapor increase over the last two decades of 0.7 ppmv and, additionally, a short-term increase after major volcanic eruptions. Furthermore, a long-term decrease in global total ozone as well as a short-term ozone decline in the tropi...
متن کاملThe Met Office HadGEM3-ES chemistry–climate model: evaluation of stratospheric dynamics and its impact on ozone
Free-running and nudged versions of a Met Office chemistry–climate model are evaluated and used to investigate the impact of dynamics versus transport and chemistry within the model on the simulated evolution of stratospheric ozone. Metrics of the dynamical processes relevant for simulating stratospheric ozone are calculated, and the free-running model is found to outperform the previous model ...
متن کامل